Tree split probabilities determine the branch lengths

نویسندگان

  • Benny Chor
  • Mike Steel
چکیده

The evolution of aligned DNA sequence sites is generally modeled by a Markov process operating along the edges of a phylogenetic tree. It is well known that the probability distribution on the site patterns at the tips of the tree determines the tree and its branch lengths. However, the number of patterns is typically much larger than the number of edges, suggesting considerable redundancy in the branch length estimation. In this paper we ask whether the probabilities of just the ‘edge-specific’ patterns (the ones that correspond to a change of state on a single edge) suffice to recover the branch lengths of the tree, under a symmetric 2-state Markov process. We first show that this holds provided the branch lengths are sufficiently short, by applying the inverse function theorem. We then consider whether this restriction to short branch lengths is necessary, and show that for trees with up to four leaves it can be lifted. This leaves open the interesting question of whether this holds in general.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Do tree split probabilities determine the branch lengths?

The evolution of aligned DNA sequence sites is generally modeled by a Markov process operating along the edges of a phylogenetic tree. It is well known that the probability distribution on the site patterns at the tips of the tree determines the tree topology, and its branch lengths. However, the number of patterns is typically much larger than the number of edges, suggesting considerable redun...

متن کامل

A two-stage pruning algorithm for likelihood computation for a population tree.

We have developed a pruning algorithm for likelihood estimation of a tree of populations. This algorithm enables us to compute the likelihood for large trees. Thus, it gives an efficient way of obtaining the maximum-likelihood estimate (MLE) for a given tree topology. Our method utilizes the differences accumulated by random genetic drift in allele count data from single-nucleotide polymorphism...

متن کامل

Effects of branch length uncertainty on Bayesian posterior probabilities for phylogenetic hypotheses.

In Bayesian phylogenetics, confidence in evolutionary relationships is expressed as posterior probability--the probability that a tree or clade is true given the data, evolutionary model, and prior assumptions about model parameters. Model parameters, such as branch lengths, are never known in advance; Bayesian methods incorporate this uncertainty by integrating over a range of plausible values...

متن کامل

Anomalous unrooted gene trees.

The coalescent and multispecies coalescent model rooted genealogies backward through time. Often, the direction of time is unknown in trees estimated from molecular sequences due to reversible mutation models, absence of an appropriate outgroup, and the absence of the molecular clock. In this article, probabilities of unrooted gene-tree topologies under the multispecies coalescent are considere...

متن کامل

Gene tree distributions under the coalescent process.

Under the coalescent model for population divergence, lineage sorting can cause considerable variability in gene trees generated from any given species tree. In this paper, we derive a method for computing the distribution of gene tree topologies given a bifurcating species tree for trees with an arbitrary number of taxa in the case that there is one gene sampled per species. Applications for g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013